Wire Knowledge
Stranding Comparison

Concentric Round Compressed Concentric Round Compact Concentric Round Solid

3% 9% 15%
Conductor Coatings/Coverings

PURPOSE

• To facilitate stripping of components applied over the conductor
• To prevent compound fall-in
• Improve solderability
• Prevent Incompatibility Issues
• Provide electrostatic shielding for overlying insulation

TYPES

• Electroplate or Hot Dip Tin Alloy Metallic Coating
• Mylar (Opaque), Polyester or Paper Tape
• Extruded Semi-conducting Polymer Shield for MV Designs
Thermoplastic

Definition: A classification for a solid insulation material that can be softened and made to flow by heating, extruded onto wire and quenched in cool water to make solid again. It can readily be softened and re-softened by repeated heating, but remains in a safely usable solid form when operated within its rated temperature limits.

<table>
<thead>
<tr>
<th>Types</th>
<th>Normal Temperature Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Molecular Weight Polyethylene HMPE</td>
<td>75°</td>
</tr>
<tr>
<td>PolyVinyl Chloride (PVC)</td>
<td>60°, 75°, 90°C</td>
</tr>
<tr>
<td>Polypropylene</td>
<td>80°</td>
</tr>
<tr>
<td>Tefzel</td>
<td>150°</td>
</tr>
<tr>
<td>Teflon</td>
<td>150° or 200°C</td>
</tr>
</tbody>
</table>
Insulation Types

Thermoset

Definition: A classification for an insulation that is extruded onto wire and then, when subject to heat and pressure, undergoes a chemical change known as vulcanization, cross-linking or curing. The process fixes (sets) the physical properties of the material so that if it is again exposed to heat, the material will not melt, flow or drip.

<table>
<thead>
<tr>
<th>Types</th>
<th>Normal Temperature Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>XLPE</td>
<td>90°C</td>
</tr>
<tr>
<td>XLPO (LSZH)</td>
<td>90°C</td>
</tr>
<tr>
<td>FR-EP</td>
<td>90°C</td>
</tr>
<tr>
<td>Silicone Rubber</td>
<td>125°C</td>
</tr>
<tr>
<td>Hypalon (Chlorosulfonated Polyethylene)</td>
<td>90°C</td>
</tr>
</tbody>
</table>
The preceding insulations are typically those used for low voltage applications (2000V or less). Listed below are insulations that are currently used in medium voltage (2001V and above) applications and high Integrity, low voltage cable designs.

<table>
<thead>
<tr>
<th>Types</th>
<th>Normal Temperature Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross-linked Polyethylene (XLPE)</td>
<td>105°C</td>
</tr>
<tr>
<td>Ethylene-Propylene-Rubber (EPR)</td>
<td>105°C</td>
</tr>
<tr>
<td>Ethylene Propylene Polymer (EPM)</td>
<td>105°C</td>
</tr>
<tr>
<td>Ethylene Propylene Diene Polymer (EPDM)</td>
<td>105°C</td>
</tr>
<tr>
<td>Ethylene Alkene Co-Polymer (EAM)</td>
<td>105°C</td>
</tr>
</tbody>
</table>
Thermoset insulations normally include a chemical catalyst additive such as sulfur or peroxide that provides the means for cross-linking of the material on the molecular level. Heat kicks off the cross-linking process and pressure is required to prevent bubbles/voids from forming due to out-gassing that occurs during the process. Following are processes typically used to make a material thermoset:

- Pressurized high temperature steam or Nitrogen cure (CV-Continuous Vulcanization)
- Lead or polymer mold - steam autoclave cure
- Moisture catalyst cure/cross-linking
- High energy electron beam cross-linking
Jackets

PURPOSE

• To protect the underlying cable core from mechanical, moisture and chemical damage during the installation and service life of the cable
• Enhance flame resistance
• Improve sunlight and electrical surface tracking resistance
• Facilitate installation
• Provide means for cable identification and grouping
Types of Jackets

Thermoplastic
- Polyvinyl Chloride (PVC)
- Polyethylene (PE)
- Nylon (Polyamide)
- Chlorinated Polyethylene (CPE)
- Thermoplastic Polyolefin (TPO)

Thermoset
- Neoprene (Polychloroprene) (CR)
- Hypalon (Chlorosulfonated Polyethylene) (CSPE, CP)
- Nitrile / PVC (Blend of Nitrile Rubber & PVC) (NBR/PVC)
- Chlorinated Polyethylene (CPE)
- Cross-linked Polyolefin (XLPO)
Single Conductor 600 Volt Cables

<table>
<thead>
<tr>
<th>THW</th>
<th>THHN / THWN</th>
<th>XLP-XHHW</th>
<th>EPR HYPALON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Problem</td>
<td>Stock</td>
<td>Stock</td>
<td>Stock</td>
</tr>
<tr>
<td>Lowest Cost</td>
<td>Low Cost-Circuit Sizes</td>
<td>Low Cost-Large Sizes</td>
<td>Highest Cost</td>
</tr>
<tr>
<td>75°C</td>
<td>90°C / 75°C</td>
<td>90°C</td>
<td>90°C / 75°C</td>
</tr>
<tr>
<td>Colors</td>
<td>Colors</td>
<td>Colors</td>
<td>Black Only</td>
</tr>
<tr>
<td>Larger OD</td>
<td>Small OD</td>
<td>Small OD</td>
<td>Larger OD</td>
</tr>
<tr>
<td>Fair Electricals</td>
<td>Fair Electricals</td>
<td>Good Electricals</td>
<td>Good Electricals</td>
</tr>
<tr>
<td>Pulls Easy</td>
<td>Pulls Easy</td>
<td>Pulls Easy</td>
<td>Pulls Harder</td>
</tr>
<tr>
<td>Good Oil Res.</td>
<td>Good Oil Res.</td>
<td>Poor Oil Res.</td>
<td>Good Oil Res.</td>
</tr>
<tr>
<td>Good Chemical</td>
<td>Good Chemical</td>
<td>Good Chemical</td>
<td>Good Chemical</td>
</tr>
<tr>
<td>Poor Low Temp. -10°C (+14°F)</td>
<td>Poor Low Temp. -10°C (+14°F)</td>
<td>Excellent Low Temp.</td>
<td>Good Low Temp.</td>
</tr>
</tbody>
</table>
Single Conductor Assemblies
Tray Cable & Interlocked Armor

WHY USED:

• Lower installed cost system compared to pipe & wire
• Complete system installed at one time
• Accidental installation damage easily found and repaired when installed in tray
• Easier/cheaper to accommodate future changes in branch circuits/taps when installed in tray
• Same cable can be used in wide variety of installations – tray, duct, conduit, aerial or direct buried
• Jacket on UL Type TC (Tray Cable) and Armored (UL Type MC) provides mechanical, moisture and chemical protection during installation
• Greatly enhanced flame retardant system
Tray Cable & Interlocked Armor

Comparison

<table>
<thead>
<tr>
<th>TRAY CABLE</th>
<th>INTERLOCKED CABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lighter</td>
<td>More Rugged</td>
</tr>
<tr>
<td>Easier To Install</td>
<td>Better Flame</td>
</tr>
<tr>
<td>Lower Cost</td>
<td></td>
</tr>
</tbody>
</table>

Color Coding / Phase Identification

- Color Coding Methods (8 total)
 - Method 1 – Full Colored Phase Conductors
 - Method 2 – Printed Numbers & Color (1-Black)
 - Method 4 – Black Phase Conductors With Printed Numbers (1-One)
- NEC Requirements
- ICEA Standard Color Coding Tables (7 total)
- Table E-2 for NEC Applications (ICEA S-73-532)
Tray Cable & Interlocked Armor

WHERE USED:

• In Industrial Establishments
• In Process Industries:
 – Petrochemical
 – Pulp & Paper
 – Chemical Plants
 – Automotive
 – Steel Mills
 – Cogeneration
 – Waste Water Treatment
• On Cable Tray Support Systems
• Some Usage In:
 – Conduit
 – Direct Burial
 – Underground Duct
 – Aerial – Messenger Supported
Medium Voltage Cable
2001 Volt Through 35kV

Medium Voltage Cable:
Cables having a voltage rating of 2001 volts and higher

Construction Comparison:
Basic Cable

600V
- Conductor
- Insulation
- Jacket (optional)

MV
- Conductor Shield
- Insulation
- Insulation Shield (5kV-35kV)
- Jacket

Definition of Shielding:
Shielding of an electric power cable is the practice of confining the electric field of the cable within the insulation surrounding the conductor. It is accomplished by means of semiconducting conductor shield and semiconducting insulation shield that is in combination with an overlying metallic shield
Medium Voltage Cable Conductor (Strand) Shield

PURPOSE

• To prelude excessive voltage stress on voids between conductor and insulation and eliminate voltage stress enhancing protrusions/dimensional irregularities to provide a smooth electrode

TYPE

• Extruded semi-conducting material compatible with the insulation and the conductor and shall have allowable operating temperatures equal to or higher than those of the insulation

BASIC REQUIREMENTS

• Firmly bonded to the overlying insulation
• Easily removable from the conductor
• Chemically, physically and thermally compatible with conductor and insulation
Medium Voltage Cable

Conductor (Strand) Shielding

- The semi-conductive layer between conductor and insulation which compensates for air voids that exist between conductor and insulation.
- Air is a poor insulator, having a nominal dielectric strength of only 55 volts per mil, while most cable insulations have dielectric strengths over 700 volts/mil. Without strand shielding an electrical potential exists that will over-stress these air voids.
- As air breaks down or ionizes, it goes into corona (partial discharges). This forms ozone which chemically deteriorates cable insulations. The semi-conductive strand shielding eliminates this potential by simply “shorting out” the air.
- Modern cables are generally constructed with an extruded strand shield.
Medium Voltage Cable

Insulation Types

- Cross-linked Polyethylene (XLP)
 - Unfilled vs. Mineral Filled
 - Tree Retardant (TRXLPE)
- Ethylene – propylene – rubber (EPR)
 - EPDM, EPM and EAM
- XLP or EPR
 - Both are excellent solid dielectric
 - 105°C rated for XLP
 - 105°C rated for EPR

<table>
<thead>
<tr>
<th>XLP</th>
<th>EPR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Cost</td>
<td>More Flexible – Easier to Install</td>
</tr>
<tr>
<td>Better Electricals</td>
<td>Better Water Treeing Resistance (Electric Utility Application)</td>
</tr>
<tr>
<td>Mechanically Tougher</td>
<td>Better Flame Resistance</td>
</tr>
<tr>
<td></td>
<td>Increased Thermal Stability</td>
</tr>
</tbody>
</table>
INSULATION

100% = GROUND FAULT CLEARING TIME <= 1 MIN.
133% = GROUND FAULT CLEARING TIME <= 1 HR.
173% = GROUND FAULT CLEARING TIME INDEFINITE
Medium Voltage Cable

Cable Insulation Thickness Comparison Chart

<table>
<thead>
<tr>
<th>Industry Standard</th>
<th>5kV-100%</th>
<th>5kV-133%</th>
<th>8kV-100%</th>
<th>8kV-133%</th>
<th>15kV-100%</th>
<th>15kV-133%</th>
<th>25kV-100%</th>
<th>25kV-133%</th>
<th>35kV-100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>UL MV-105, ICEA S-93-639</td>
<td>.090”</td>
<td>.090”</td>
<td>.115”</td>
<td>.175”</td>
<td>.220”</td>
<td>.260”</td>
<td>.345”</td>
<td>.345”</td>
<td></td>
</tr>
<tr>
<td>AEIC CS8 ICEA S-97-682</td>
<td>.090”</td>
<td>.115”</td>
<td>.115”</td>
<td>.175”</td>
<td>.220”</td>
<td>.260”</td>
<td>.345”</td>
<td>.345”</td>
<td></td>
</tr>
</tbody>
</table>
Medium Voltage Cable

INSULATION SHIELD (NON-METALLIC)

PURPOSE

• To confine the electric field within the cable insulation
• To obtain symmetrical radial distribution of voltage stress within the solid dielectric (insulation)
• To reduce hazard of shock to personnel
• To eliminate damaging effects of varying electrical conductivity of installation environment
• To transfer cable insulation charging current to the metallic shield
Medium Voltage Cable

INSULATION SHIELD (METALLIC)

PURPOSE

- To safely carry the cable charging current off to a solid ground point
- To provide a substantial barrier for an increase in flame retardancy of the cable core
- To protect the cable core from mechanical damage, including rodent/termite attack (Bronze tape)
- To assist in carrying fault current (Not primary function and capability will depend on cross section/size of the metallic shield)
Medium Voltage Cable

INSULATION SHIELD (METALLIC)

TYPES

- Corrugated longitudinally applied copper wires
- Helically applied copper wires (drain wire/concentric neutral)
- Helically applied and overlapped copper tape
- Lateral serve, corrugated copper tape
Medium Voltage Cable

JACKETS

Thermoplastic

- Polyvinyl Chloride (PVC)
- Linear Low Density Polyethylene (LLDPE)
- Chlorinated Polyethylene (CPE)
- Semiconducting Chlorinated Polyethylene (CPE)
- Thermoplastic Polyolefin (TPO)
SHIELDED VS. NON-SHIELDED

<table>
<thead>
<tr>
<th>Shielded Cable</th>
<th>Non-Shielded Cable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most reliable, long-lived cable design</td>
<td>Less costly than shielded cable</td>
</tr>
<tr>
<td>Provides uniform stress distribution eliminating possibility of surface tracking and discharges</td>
<td>May be susceptible to surface discharges in wet, contaminated areas</td>
</tr>
<tr>
<td>Termination kits required</td>
<td>No termination kits required – lower cost installation</td>
</tr>
<tr>
<td>Reduces shock hazard to personnel</td>
<td>Shock hazard to personnel does exist</td>
</tr>
<tr>
<td>Protection provided for cables connected to overhead lines or otherwise subject to induced potentials</td>
<td>Convenient for terminating in motor terminal boxes where there is no room for stress cones on shielded cables</td>
</tr>
</tbody>
</table>

NOTE: NON-SHIELDED AVAILABLE IN ONLY 2.4kV, MAX
Medium Voltage Cable

INSULATION COMPOUND COMPARISONS

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>XLP</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>TR-XLP</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>EPR</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Ratings:
- 5 = Exceptional
- 4 = Excellent
- 3 = Good
- 2 = Fair
- 1 = Poor
JACKET COMPOUND COMPARISONS

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PVC</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>LT-PVC</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>PE</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>CPE</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>HYP</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>POLYO</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Ratings:
5 = Exceptional
4 = Excellent
3 = Good
2 = Fair
1 = Poor
• UL Horizontal Flame Test
• UL Vertical Flame Test
• VW-1 Vertical Wire Flame Test
• IEEE-383 & UL 70,000 BTU/HR Ribbon Burner Flame Test
 - UL-TC, For CT Use
 - UL-LS
• ICEA T-29-520 210,000 BTU/HR Ribbon Burner Flame Test
• IEEE-1202
• FT-4
Codes & Standards

- NEC National Electrical Code
- UL Underwriters Laboratories
- CSA Canadian Standards Association
- ICEA Insulated Cable Engineers Association
- NEMA National Electrical Manufacturers Association
- AEIC Association of Edison Illuminating Co’s.
- ASTM American Society for Testing & Materials
- IEEE Institute of Electrical & Electronic Engineers