
Instrumentation Cables

C-L-X OKOSEAL-N Type P-OS/SP-OS • Type MC-HL Cable/600V • For CT Use, Sun Res

UL and ABS listed as Marine Shipboard Cable (CLXM-CWCMC) 600V/1000V

Construction: Stranded copper conductors, Okoseal insulation with nylon covering on primaries, color coded, twisted into pair or triad, or groups of pairs or triads, numeric print group identification, aluminum/polyester shield and coated stranded copper drain wire over each group with 100% isolation between group shields, multiple groups assembled, aluminum/polyester shield and coated stranded copper drain num/polyester shield and coated stranded copper drain stranded copper drain wire overall, rip cord, Okoseal inner jacket with continuously welded and corrugated C-L-X sheath, with Okoseal jacket. **Pairs:** Black/white and numbered color code. **Triads:** Black/white and numbered color code.

Sizes: #16 AWG

Application: For use on Class 1 remote control and signaling circuits; where a 600V rated cable is desired; for control, signal and communication circuits; indoors or outdoors, in cable trays, in raceways, direct burial, supported by a messenger in outdoor locations. Suitable for Class I, Division 2, or Class II, Division 2, as well as Class I, Class II and Class III, Division 2, hazardous locations. Also for use as nonpower-limited fire protective signaling cable (NPLF) per NEC Code 760. Listed by the American Bureau of Shipping (ABS) as CWCMC-MC-HL. Meets IEEE 383-74 and IEEE 1202 vertical tray flame tests. Also passes 210,000 BTU vertical tray flame test per ICEA T-29-520.

Single Pair and Triad Cables P-OS

Catalog Number	Conductor Size & No. of Strands	Number of Pairs	Number of Triads	Insulation Thickness (mils)	C-L-X O.D. (inches)	Inner Jacket Thickness (mils)	Outer Jacket Thickness (mils)	Approx.O.D. (inches)	Approx Net Weight (Ibs/1,000 ft.)
564-60-3401	16(7x)	1		15/4	.53	66	50	.64	182
564-65-3401	16(7x)		1	15/4	.53	58	50	.64	190

Multi-Pair and Triad Cables SP-OS

Catalog Number	Conductor Size & No. of Strands	Number of Pairs	Number of Triads	Insulation Thickness (mils)	C-L-X O.D. (inches)	Inner Jacket Thickness (mils)	Outer Jacket Thickness (mils)	Approx.O.D. (inches)	Approx Net Weight (Ibs/1,000 ft.)
561-60-3402	16(7x)	2		15/4	.67	50	50	.78	234
561-60-3404	16(7x)	4		15/4	.80	50	50	.91	335
561-60-3408	16(7x)	8		15/4	.93	50	50	1.04	492
561-60-3412	16(7x)	12		15/4	1.11	50	50	1.22	674
561-60-3424	16(7x)	24		15/4	1.42	50	50	1.53	1118
561-60-3436	16(7x)	36		15/4	1.64	60	60	1.82	1586
561-65-3404	16(7x)		4	15/4	.84	50	50	.95	395
561-65-3408	16(7x)		8	15/4	1.06	50	50	1.17	637
561-65-3412	16(7x)		12	15/4	1.24	50	50	1.35	863