

VOLTAGE DROP CALCULATION - COPPER CONDUCTORS

Line-to-Line Voltage Drop for 3 Phase, 60 Hz or Direct Current Circuits @ 60°C Conductor Temperature

	NON-MAGNETIC CONDUIT					MAGNETIC CONDUIT			
WIRE AWG KCMIL									
	70	80	90	100	DC	70	80	90	100
14	.380	.430	.480	.530	.594	.380	.430	.480	.530
12	.240	.270	.300	.330	.374	.240	.270	.300	.330
10	.150	.170	.190	.210	.236	.150	.170	.190	.210
8	.097	.110	.120	.130	.148	.099	.110	.120	.130
6	.064	.072	.079	.084	.093	.066	.073	.080	.084
4	.043	.047	.051	.053	.059	.044	.048	.052	.053
2	.028	.031	.033	.033	.037	.030	.032	.034	.034
1	.024	.025	.027	.026	.029	.025	.026	.028	.026
1/0	.020	.021	.022	.021	.023	.021	.023	.023	.021
2/0	.016	.017	.018	.016	.018	.018	.019	.019	.017
3/0	.014	.014	.015	.013	.015	.015	.016	.016	.014
4/0	.011	.011	.011	.010	.012	.013	.014	.013	.011
250	.011	.011	.011	.0088	.0098	.012	.012	.012	.0092
300	.0097	.0097	.0095	.0073	.0082	.011	.011	.011	.0078
350	.0088	.0088	.0085	.0062	.0070	.010	.010	.0095	.0068
400	.0083	.0081	.0076	.0055	.0061	.0097	.0095	.0088	.0060
500	.0074	.0073	.0068	.0045	.0049	.0088	.0085	.0078	.0050
600	.0069	.0066	.0059	.0038	.0040	.0083	.0080	.0078	.0030
700	.0066	.0062	.0055	.0033	.0035	.0080	.0074	.0066	.0037
750	.0064	.0059	.0054	.0029	.0033	.0000	.0074	.0064	.0037
1000	.0057	.0054	.0047	.0023	.0025	.0071	.0066	.0057	.0028

"F" VALUES

NOTES: 1. "F" Values are reasonably accurate up to a conductor temperature of 75°C and for multi-conductor cables.

2. Refer to NEC for voltage drop requirements.

3. For 90°C, 3 phase, line-to-line voltage drop, multiply "F" value by 1.102.

4. For single phase line-to-line voltage drop, multiply "F" value by 1.155.

5. For single or 3 phase line-to-neutral voltage drop, multiply "F" value by 0.577.

Applicable Formulas:

1.	[™] Voltage Drop =	<u>"F" x Amp x Run Distance</u>
		Line Voltage
2.	Run Distance =	00 Voltage Drop x Line Voltage "F" x Amp
3.	"F" Factor =	00 Voltage Drop x Line Voltage
		Run Distance x Amp